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Abstract. We represent the generators of the SU(N) algebra as bilinear combinations of Fermi operators
with imaginary chemical potential. The distribution function, consisting of a minimal set of discrete imag-
inary chemical potentials, is introduced to satisfy the local constraints. This representation leads to the
conventional temperature diagram technique with standard Feynman codex, except that the Matsubara
frequencies are determined by neither integer nor half-integer numbers. The real-time Schwinger-Keldysh
formalism is formulated in the framework of complex equilibrium distribution functions for auxiliary semi-
fermionic fields. We discuss the continuous large N and SU(2) large spin limits. We illustrate the application
of this technique for magnetic and spin-liquid states of the Heisenberg model.

PACS. 75.10.-b General theory and models of magnetic ordering – 75.10.Jm Quantized spin models –
75.40.Gb Dynamic properties (dynamic susceptibility, spin waves, spin diffusion, dynamic scaling, etc.) –
71.10.Fd Lattice fermion models (Hubbard model, etc.)

Several approaches have been proposed for the descrip-
tion of spin systems in statistical physics. Methods of
functional integration based on various representation of
spin operators such as Fermi, Bose, Majorana, supersym-
metric or Hubbard operators [1–11] have been applied
to many problems involving quantum spins and pseu-
dospins [12–23]. The difficulty with the representation of
spin operators is connected with the fact that spins pos-
sess neither Fermi nor Bose statistics. The commutation
relations for spins are determined by the SU(2) algebra,
leading to the absence of a Wick theorem for SU(2) gen-
erators. The Gaudin [24] theorem existing instead makes
it impossible to construct a simple diagram technique
directly for spin operators. To resolve this problem, var-
ious representations [2–11] have been introduced. Never-
theless, the representation of spins as a bilinear combina-
tion of Fermi/Bose operators enlarges the dimensionality
of Hilbert space where these operators act. Thus, the spu-
rious (unphysical) states should be excluded from the con-
sideration resulting in a constraint requirement. Basically,
different representations cure the constraint problem in a
different way. Nevertheless, the usual price for simplicity
is the replacement of the local constraint on each point
containing the spins by a so-called global constraint, so
that the restriction is fulfilled only in the average over all
sites. It is known that such a replacement results in uncon-
trollable approximations for quantum spins (especially in
low dimensions). Although the use of a global constraint
is questionable for SU(2) systems, it becomes more rea-
sonable for higher SU(N) groups, especially in the “large
N limit”. The corresponding approach is known as “1/N
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expansion”, [17–21] successfully describing the strong cou-
pling limits of the Kondo impurity [12], Anderson lat-
tice [13–15] and Hubbard [16] models and also SU(N)
Heisenberg antiferromagnets on a square lattice [17–22]
shedding light on the mechanism of high Tc supercon-
ductivity in cuprate compounds. Although SU(N = 2)
models are of primary physical interest, the SU(N 6= 2)
models can be considered as “approximate models” where
an “exact solution” can be gained in contrast to “exact
models” where the “approximate solution” is hard to ob-
tain [20,21]. The simplification arises due to expansion in
the inverse number of “flavors” 1/N , making it possible
to start with mean-field solution and systematically find
corrections to it.

The goal of this paper is to consider a semi-fermionic
representation for SU(N) generators for arbitrary (not
necessary large) N , applying a different idea of constraint
realization. This idea is know as Popov-Fedotov [25] rep-
resentation being initially proposed for S = 1/2 and S = 1
spins. Based on an exact representation of spin operators
as fermions with imaginary chemical potential, this repre-
sentation resulted in the conventional Feynman tempera-
ture diagram technique, nevertheless providing a rigorous
treatment of the local constraint [26–31]. In this paper we
give a generalization of this method to SU(N) and we also
construct the real-time formalism for the semi-fermionic
spin representation.

The SU(N) algebra is determined by the generators
obeying the following commutational relations:

[Ŝβα,iŜ
ρ
σj ] = δij(δραŜ

β
σi − δβσ Ŝ

ρ
αi) (1)
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Fig. 1. (a) Rectangular Young tableau to denote a SU(N) rep-
resentation, (b) single column tableau corresponding to nc = 1
and (c) single row tableau standing for spin S = nc/2 repre-
sentation of SU(2) group.

where α, β = 1, ..., N . We adopt the definition of the
Cartan algebra [32] of the SU(N) group {Hα} = Sαα simi-
lar to the one used in [17], noting that the diagonal gener-
ators Sαα are not traceless. To ensure a vanishing trace, the
diagonal generators should only appear in combinations

N∑
α=1

sαS
α
α with

N∑
α=1

sα = 0 (2)

which effectively reduces the number of independent diag-
onal generators to N − 1 and the total number of SU(N)
generators to N2 − 1.

For SU(2) one recognizes the usual spin operators

S2
1 = S+, S1

2 = S−, S2
2 − S1

1 = 2Sz (3)

with the usual commutation relations [33] and the Pauli
matrices as generators of the SU(2) group. We shall not
confine ourself to some special type of Hamiltonian. Never-
theless, it’s worthwhile to mention that the SU(N) gener-
alization of the Heisenberg model is given by the following
expression [17,20,21]

H =
J

N

∑
〈ij〉

∑
αβ

Ŝβα(i)Ŝαβ (j). (4)

On each site, there may exist many particles, whose sym-
metry properties define a specific representation of SU(N).
The most transparent way to visualize an irreducible
SU(N) representation are Young tableaux [34,35]. Instead
of the general Young tableau, specified by N − 1 integers,
for example the lengths of the rows, we restrict us for
the main part of the paper to rectangular tableaux, with
1 ≤ m ≤ N rows and nc ≥ 1 columns, illustrated in
Figure 1.

The familiar spin is given by N = 2, m = 1, nc = 2S,
so the Young tableau contains one row of 2S length, with
only one box for S = 1/2. Also of special importance are
the tableaux with nc = 1, giving the N − 1 fundamental
representations of SU(N).

The Ŝαβ generator may be written as biquadratic form
in terms of Schwinger boson operators [22,33]:

Ŝαβ = b†αpb
βp (5)

and a constraint as follows

N∑
α=1

b†αpb
αq = δqpnc (6)

where p = 1, ...,m is the number of “colors”.
The equivalent fermionic representation of the gener-

ators of SU(N)[17] is given by

Ŝαβ =
∑
a

c†αac
βa (7)

where the “color” index a, b = 1, ..., nc and the nc(nc+1)/2
constraints

N∑
α=1

c†αac
αb = δbam (8)

restrict the Hilbert space to the states with m ∗ nc parti-
cles and ensure the characteristic symmetry in the color
index a. The antisymmetric behavior with respect to α is
a direct consequence of the fermionic representation.

Let us consider the partition function for the Hamil-
tonian, expressed in terms of SU(N) generators

ZS = Tr exp(−βHS). (9)

For SU(2) S = 1/2 and S = 1 it is possible to map the
spin partition function onto a fermionic partition func-
tion where the chemical potential of fermions is purely
imaginary [25]

ZS = A Tr exp (−β(HF − µNF)) = AZF (10)

with µ = −iπT/2 and A = insite for S = 1/2 and
µ = −iπT/3 and A = (i/

√
3)nsite for S = 1, nsite de-

notes the number of sites in a lattice. This results in usual
Feynman-like diagram technique built up with the help
of auxiliary Fermi (Grassmann) fields. The corresponding
Matsubara frequencies for Popov-Fedotov (PF) fermions
after applying the generalized Grassmann boundary con-
ditions [25] read as ωn = 2πT (n + 1/4) for S = 1/2 and
ωn = 2πT (n+1/3) for S = 1. The imaginary chemical po-
tentials are important for the realization of an exclusion
principle providing the fulfillment of the general identity

ZS = Tr exp(−βHS) = Tr exp(−βHF)δnF,1. (11)

The Popov-Fedotov representation has been generalized
for arbitrary values of spin S for the SU(2) group in [36] by
introducing the distribution of discrete chemical potentials
µ(j), with j being the site index, for PF fermions:

ZS =
∏
j

∫
dµ(j)P (µ(j))ZF(µ(j)). (12)
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For the SU(N) algebra we shall try to find the partition
function in a similar manner

ZS =
∫ ∏

j

dµ(j)P (µ(j))Tr exp (−β(HF − µ(j)nF))

=
∫ ∏

j

dµ(j)P (µ(j))ZF(µ(j)).

(13)

We use the path integral representation of the partition
function

ZS/Z
0
S =∫ ∏
j

dµ(j)P (µ(j)) exp(A)/
∫ ∏

j

dµ(j)P (µ(j)) exp(A0)

(14)

where the action A and A0 are determined by

A = A0 −
∫ β

0

dτHF(τ),

A0 =
∑
j

N∑
k=1

∫ β

0

dτāk(j, τ)(∂τ + µ(j))ak(j, τ) (15)

and the fermionic representation of SU(N) generators (7)
is applied.

To begin with we confine ourselves to two particular
cases of SU(N) with nc = 1 (corresponding to an effective
“spin size” S = 1/2 and in the language of Young tableaux
described by one column) and SU(2) for arbitrary value
of nc = 2S (one row Young tableau).

Let us first consider nc = 1. We denote the corre-
sponding distribution by PN,m(µ(j)), where m is the num-
ber of particles in the SU(N) orbital, or in other words,
1 ≤ m < N labels the different fundamental representa-
tions of SU(N).

nj =
N∑
k=1

āk(j)ak(j) = m. (16)

To satisfy this requirement, the minimal set of chemical
potentials and the corresponding form of PN,m(µ(j)) are
to be derived.

Let us classify the states in Fock and spin spaces. We
note that the dimension of the Fock space is dimHF = 2N
and spurious states should be excluded. Thus, there are
ν(N,m) = CmN = N !/(m!(N −m)!) physical states which
can be obtained from the vacuum state Φ0 = |0, ..., 0〉︸ ︷︷ ︸

N

as

follows

Φ
{ν}
phys = (

m∏
l=1

a†l )Φ0 (17)

or from the| 1, ..., 1︸ ︷︷ ︸
m

, 0, ..., 0︸ ︷︷ ︸
N−m

〉 state by transferring the oc-

cupied states from left to the right side using the group
generators.

To derive the distribution function we use the fol-
lowing identity for constraint (16) expressed in terms of
Grassmann variables

δnj ,m =
1
N

sin (π(nj −m)) / sin
(
π(nj −m)

N

)
· (18)

Substituting this identity into (11) and comparing with
(12) on gets

PN,m(µ(j)) =
1
N

N∑
k=1

exp
(

iπm
N

(2k − 1)
)
δ(µ(j) − µk)

(19)

where

µk = − iπT
N

(2k − 1). (20)

Since the Hamiltonian is symmetric under exchange of
particles and holes if the sign of the chemical potential is
changed simultaneously, we can simplify (19) to

PN,m(µ(j)) =
2i
N

bN/2c∑
k=1

sin
(
πm

2k − 1
N

)
δ(µ(j) − µk)

(21)

where bN/2c denotes the integer part of N/2. As the dis-
cussion below will show, this is the minimal represen-
tation of the distribution function corresponding to the
minimal set of the discrete imaginary chemical potentials.
Another distributions function different from (21) can be
constructed when the sum is taken from k = N/2 + 1 to
N . Nevertheless, this DF is different from (21) only by the
sign of imaginary chemical potentials µ̃k = µ∗k = −µk and
thus is supplementary to (21).

Particularly interesting for evenN is the case when the
SU(N) orbital is half-filled, m = N/2. Then all chemical
potentials are weighted with equal weight

PN,N/2(µ(j)) =
2i
N

N/2∑
k=1

(−1)k+1δ(µ(j)− µk). (22)

Taking the limit N →∞ one may replace the summation
in expression (22) in a suitable way by integration. Note,
that taking N → ∞ and m → ∞ we nevertheless keep
the ratio m/N = 1/2 fixed. Then, the following limiting
distribution function can be obtained:

PN,N/2(µ(j)) N→∞−→ β

2πi
exp

(
−βµ(j)

N

2

)
(23)

resulting in the usual continuous representation of the lo-
cal constraint for the simplest case nc = 1 (compare it
with (11))

ZS = Tr(exp (−βHF) δ(nj −
N

2
)) · (24)

We note the obvious similarity of the limiting DF (23)
with the Gibbs canonical distribution provided that the
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Wick rotation from the imaginary axis of the chemical
potential µ to the real axis of energies E is performed and
thus µ(j)N/2 has a meaning of energy.

Up to now the representation we discussed was purely
fermionic and expressed in terms of usual Grassmann vari-
ables when the path integral formalism is applied. The
only difference from slave fermionic approach is that imag-
inary chemical potentials are introduced to fulfill the con-
straint. Nevertheless, by making the replacement

ak(j, τ)) → ak(j, τ) exp
(

iπτ
β

2k − 1
N

)
āk(j, τ) → āk(j, τ) exp

(
− iπτ
β

2k − 1
N

)
(25)

we are coming to generalized Grassmann (semi-fermionic)
boundary conditions

ak(j, β) = ak(j, 0) exp
(
iπ 2k−1

N

)
āk(j, β) = āk(j, 0) exp

(
−iπ 2k−1

N

)
· (26)

This leads to a temperature diagram technique for Green
functions

Gαβ(j, τ) = −〈Tτaα(j, τ)āβ(j, 0)〉 (27)

of semi-fermions with Matsubara frequencies different
from both Fermi and Bose representations.

The minimal set of Matsubara frequencies ωn/(2πT )
forms for SU(N) with even N the triangle table shown in
Figure 2.

n+ 1

4

n + 1

8
n + 3

8

n+ 1

12
n+ 1

4
n+ 5

12

n+ 1

16
n+ 3

16
n + 5

16
n + 7

16

n + 1
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n+ 3

20
n+ 1

4
n+ 7

20
n+ 9

20

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

n+ 1

2N
:::::::::::::::::::::::::::::::::::::::::::n + 1

2
(1� 1

N
)

Bose Fermi

n n+1/2

ωn

2πT

Fig. 2. The minimal set of Matsubara frequencies for SU(N)
representation with even N .

The exclusion principle for this case is illustrated on
Figure 3, where the first two groups SU(2) and SU(4) are
shown. The first point to observe is that the spin Hamil-
tonian does not distinguish the n particle and the n hole
(or N−n particle) subspace. Due to equation (20) the two
phase factors exp(βµn) and exp(βµ(N−n)) accompanying
these subspaces in equation (21) add up to a purely imag-
inary value within the same chemical potential, and the
empty and the fully occupied states are always canceled.

n=0

n=1

n=2

n=3

n=4 n=0

n=1 n=3

n=4

n=2

Re eβµn

Im eβµn

Re eβµn
Re eβµn

Im eβµn
Im eβµn

SU(4)

n=0

n=1

n=2

SU(2)

Fig. 3. Graphical representation of exclusion principle for
SU(N) semi-fermionic representation with even N , nc = 1 (we
use µ = iπT/2 for SU(2) and µ1 = iπT/4, µ2 = 3iπT/4 for
SU(4)).

In the case of N ≥ 4, where we have multiple chemical
potentials, the distribution function P (µ) linearly com-
bines these imaginary prefactors to select out the desired
physical subspace with particle number n = m.

In Figure 3, we note that on each picture the empty
and fully occupied states are canceled in their own unit
circle. For SU(2) there is a unique chemical potential µ =
±iπT/2 which results in the survival of single occupied
states. For SU(4) there are two chemical potentials (see
also Fig. 2). The cancellation of single and triple occupied
states is achieved with the help of proper weights for these
states in the distribution function whereas the states with
the occupation number 2 are doubled according to the
expression (22). In general, for SU(N) group with nc = 1
there exists N/2 circles providing the realization of the
exclusion principle.

We consider now the generalization of the SU(2) alge-
bra for the case of a large moment S with 2S + 1 projec-
tions. Here, the most convenient fermionic representation
is constructed with the help of a 2S+ 1 component Fermi
field ak(j) provided that the generators of SU(2) satisfy
the following equations

S+ =
S−1∑
k=−S

√
S(S + 1)− k(k + 1)a†k+1(j)ak(j)

S− =
S∑

k=−S+1

√
S(S + 1)− k(k − 1)a†k−1(j)ak(j)

Sz =
S∑

k=−S
ka†k(j)ak(j) (28)
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such that dimHF = 22S+1 whereas the constraint reads
as follows

nj =
k=S∑
k=−S

a†k(j)ak(j) = l = 1. (29)

We consider the distribution function for arbitrary l for
the sake of generality. It describes the orbital part of an
atomic subshell with orbital quantum number S, with l
particles present. We denote the corresponding distribu-
tion function of the chemical potential by P2S+1,l(µ(j)).
Following the same routine as for SU(N) generators and
using the occupancy condition to have l (or 2S + 1 − l)
states from the 2S + 1 states filled, one gets the following
distribution function, after using the particle-hole symme-
try of HS :

P2S+1,l(µ(j)) =
2i

2S + 1

×
bS+1/2c∑
k=1

sin
(
πl

2k − 1
2S + 1

)
δ(µ(j)− µk)

(30)

where the chemical potentials are µk = −iπT (2k −
1)/(2S + 1) and k = 1, ..., bS + 1/2c, similarly to
equation (20).

In the particular case of the SU(2) model with l = 1
for some chosen values of spin S the distribution functions
are determined by the following expressions

P2,1(µ(j)) = i δ(µ(j) +
iπT
2

) (31)

for S = 1/2

P3,1(µ(j)) = P3,2(µ(j)) =
i√
3
δ(µ(j) +

iπT
3

) (32)

for S = 1.
This result corresponds to the original Popov-Fedotov

description restricted to the S = 1/2 and S = 1 cases. We
present as an example some other distribution functions
obtained according to general scheme considered above:

P4,1(µ) = P4,3(µ)

=
i
√

2
4

(
δ(µ+

iπT
4

) + δ(µ+
3iπT

4

)
(33)

for S = 3/2, SU(2) and

P4,2(µ) =
i
2

(
δ(µ+

iπT
4

)− δ(µ+
3iπT

4
)
)

(34)

for effective spin “S = 1/2”, SU(4),

P5,1(µ) = P5,4(µ) =
i√
10

(√
1− 1√

5
δ(µ+

iπT
5

)

+

√
1 +

1√
5
δ(µ+

3iπT
5

)

)
(35)

n+ 1

3

n + 1

5
n + 2

5

n+ 1

7
n+ 2

7
n+ 3

7

n + 1

9
n + 2

9
n + 1

3
n + 4
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n+ 1
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:::::::::::::::::::::::::::::::::::::::::::n + 1
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n n+1/2

ωn

2πT

Fig. 4. The minimal set of Matsubara frequencies for SU(2)
representation for integer values of the spin and l = 1.

for S = 2, SU(2) etc.

A limiting distribution function corresponding to equa-
tion (23) for the constraint condition with arbitrary l is
given by

P∞,l(µ(j)) S→∞−→ β

2πi
exp(−βlµ(j)). (36)

For the case l = m = N/2→∞ and S = (N − 1)/2→∞
the expression for the limiting DF P∞,l(µ(j)) coincides
with (23). We note that in S →∞ (or N →∞) limit con-
tinuum chemical potentials play role of additional U(1)
fluctuating field whereas for finite S and N they are char-
acterized by fixed and discrete values.

When S assumes integer values, the minimal funda-
mental set of Matsubara frequencies is given by the table
in Figure 4.

The exclusion principle for SU(2) in the large spin limit
can be also understood with the help of Figure 3 and Fig-
ure 5. One can see that empty and fully occupied states are
canceled in each given circle similarly to even-N SU(N)
algebra. The particle-hole (PH) symmetry of the represen-
tation results in an equivalence of single occupied and 2S
occupied states whereas all the other states are canceled
due to proper weights in the distribution function (30). In
accordance with PH symmetry being preserved for each
value of the chemical potential all circle diagrams (see
Fig. 3, Fig. 5) are invariant with respect to simultaneous
change µ↔ −µ and nparticle ↔ nholes.

Let us make few comments concerning the general rect-
angular Young tableau of size nc∗m. The fermionic repre-
sentation (7) is characterized by an N ∗nc component field
with nc identical diagonal constraints and nc(nc−1)/2 off-
diagonal constraints (8). The effective “filling” determin-
ing the number of fermions on each site is mnc. However,
not all of these (ncN)!/((ncm)!((N − m)nc)!) states are
representing proper physical states. One should take into
account the constraints equation (8) to obtain the com-
plete set. The number of physical states of a rectangular
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n=0n=5

e Im 
βµn

 Re 
βµe n

n=0

e Im 
βµn

 Re 
βµe n

n=1n=4

n=2n=3

n=2

n=1

n=5

n=3

n=4

n=0n=3

n=1n=2
e Im 

βµn

 Re 
βµe n

S=2

S=1

Fig. 5. Graphical representation of exclusion principle for
SU(2) semi-fermionic representation for S = 1 and S = 2.
For any arbitrary integer value of spin there exists S circle
diagrams corresponding to the S different chemical potentials
and providing the realization of the exclusion principle.

Young tableau is given by the expression:

ν(N,m, nc) =

N−m︷ ︸︸ ︷
CmN+nc−1C

m
N+nc−2...C

m
m+nc

CmN−1C
m
N−2...C

m
m︸ ︷︷ ︸

N−m

=

nc︷ ︸︸ ︷
CmN+nc−1C

m
N+nc−2...C

m
N

Cmm+nc−1C
m
m+nc−2...C

m
m︸ ︷︷ ︸

nc

· (37)

While the diagonal part of equation (8) could be satisfied
with color-dependent chemical potentials µa(j), coupling
only to

∑
α c
†
αac

αa, an exclusion procedure for the off-
diagonal constraints needs either projection operators or
an a priori restriction on the trace, using e.g. coherent
states [17].

Another generalization is applicable for a broader
range of cases. The general Young tableau (not necessarily
rectangular), representing any irreducible representation
(p), can be described in the context of our approach in
the following way. The generators S(p)

m are expressed as
matrices

(S(p)
m )βα = 〈ψ(p)

β |T (k)×(l)
m |ψ(p)

α 〉 (38)

with T (k)×(l)
m = T

(k)
m + T

(l)
m being the generators in a suit-

able direct product of representations (k) and (l) and the
states |ψ(p)

α 〉 are obtained in terms of Clebsch-Gordon co-
efficients

|ψ(p)
α 〉 =

∑
µ,ν

(k, l;µ, ν|p;α)|ψ(k)
µ 〉 × |ψ(l)

ν 〉 · (39)

This procedure can be iterated until (k) and (l) are fun-
damental irreducible representations of SU(N). The size
of the matrices S(p)

m is equal to the dimension of the repre-
sentation, ν(p). The trace is now easily expressed in terms
of ν(p) fermionic fields, enforcing the constraint δnj ,1 with
the distribution of chemical potentials (see Eq. (21))

Pν(p),1(µ(j)) =
2i
ν(p)

bν(p)/2c∑
k=1

sin
(
π

2k − 1
ν(p)

)
δ(µ(j)− µk).

(40)

For the simple case of SU(2), which yields only single-row
tableaux, this procedure gives the fermionic representa-
tion described in equations (28–30). In the case of single-
column tableaux for SU(N), however, and in the general
case of mixed symmetry, it does not fully use the fermionic
commutation properties. Therefore, it is in general not the
representation with the minimal number of fermions and
the minimal number of chemical potentials in P (µ).

We discuss finally the real-time formalism based on
the semi-fermionic representation of SU(N) generators.
This approach is necessary for treating the systems be-
ing out of equilibrium, especially for many component
systems describing Fermi (Bose) quasiparticles interact-
ing with spins. The real time formalism is also an alterna-
tive approach for the analytical continuation method for
equilibrium problems allowing direct calculations of cor-
relators whose analytical properties as function of many
complex arguments can be quite cumbersome.

A long time ago Keldysh [38] and Schwinger [39] have
proposed a novel approach for the description of kinetic
phenomena in metals. This approach was found espe-
cially fruitful for normal metals [40], and, in many re-
cent applications, for superconductors [41], for disordered
interacting (normal or superconducting) electron liq-
uids [42] for example. The previous application of the real-
time formalism to the quantum theory of Bose-Einstein
condensation (BEC) [45] allowed the derivation of a
Fokker-Planck equation, which describes both kinetic and
coherent stages of BEC. Moreover [46] developed the
closed-time path integral formalism for aging effects in
quantum disordered systems being in contact with an en-
vironment. The Keldysh technique in application to dis-
ordered systems (see [42–44] and [47,48]) has also been
recently applied to develop a field theory alternative to
the previously used replica technique.

To derive the real-time formalism for SU(N) gen-
erators we use the path integral representation along
the closed time Keldysh contour (see Fig. 6). Following
the standard route [49] we can express the partition
function of the problem containing SU(N) generators
as a path integral over Grassmann variables ψl =
(al,1(j), ..., al,N (j))T where l = 1, 2 stands for upper and
lower parts of the Keldysh contour, respectively,

Z/Z0 =
∫

Dψ̄Dψ exp(iA)/
∫

Dψ̄Dψ exp(iA0) (41)

where the actions A and A0 are taken as an integral
along the closed-time contour Ct + Cτ which is shown
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C
+

t t

Cτ

ψ

ψ

1

2

t-i β

Ψ
-

Fig. 6. The Keldysh contour going from −∞ → ∞ → −∞
in real time. The boundary conditions on the imaginary time
segment determine the generalized distribution functions for
quasiparticles.

in Figure 6. The contour is closed at t = −∞ + iτ
since exp(−βH0) = Tτ exp

(
−
∫ β

0 H0dτ
)

. We denote the
ψ fields on upper and lower sides of the contour Ct as ψ1

and ψ2 respectively. The fields Ψ stand for the contour
Cτ . These fields provide matching conditions for ψ1,2 and
are excluded from final expressions. Taking into account
the semi-fermionic boundary conditions for generalized
Grassmann fields (26) one gets the matching conditions
for ψ1,2 at t = ±∞,

ψµ1,α|k(−∞) = exp
(

iπ
2k − 1
N

)
ψµ2,α|k(−∞)

ψµ1,α|k(+∞) = ψµ2,α|k(+∞) (42)

for k = 1, ..., bN/2c and α = 1, ..., N . The correlation
functions can be represented as functional derivatives of
the generating functional

Z[η] = Z−1
0

∫
Dψ̄Dψ exp

(
iA+ i

∮
C

dt(η̄σzψ + ψ̄σzη)
)

(43)

where η represents sources and the σz matrix stands for
“causal” and “anti-causal” orderings along the contour.

The on-site Green’s functions (GF) which are matrices
of size 2N ×2N with respect to both Keldysh (lower) and
spin-color (upper) indices are given by

Gαβµν (t, t′) = −i
δ

iδη̄αµ(t)
δ

iδηβν (t′)
Z[η]|η̄,η→0. (44)

To distinguish between imaginary-time (27) and real-
time (44) GF’s we use different notations for Green’s func-
tions in these representations.

After a standard shift-transformation [49] of fields ψ
the Keldysh GF of free semi-fermions assumes the form

Gα0 (ε) = GR,α0

(
1− fε −fε
1− fε −fε

)
−GA,α0

(
−fε −fε

1− fε 1− fε

)
where the retarded and advanced GF’s are

G
(R,A)α
0 (ε) = (ε± iδ)−1, fε = f (N,k)(ε) (45)

with equilibrium distribution functions

f (N,k)(ε) = T
∑
n

eiωnkτ |+0

iωnk − ε
=

1
eiπ(2k−1)/N exp(βε) + 1

·

(46)

A straightforward calculation of f (N,k) for the case of even
N leads to the following expression

f (N,k)(ε) =
N∑
l=1

(−1)l−1 exp (βε(N − l)) exp
(
− iπl(2k − 1)

N

)
exp(Nβε) + 1

, (47)

where k = 1, ..., N/2.
The equilibrium distribution functions (EDF)

f (2S+1,k) for the auxiliary Fermi-fields representing
arbitrary S for SU(2) algebra are given by

f (2S+1,k)(ε) =
2S+1∑
l=1

(−1)l−1 exp (βε(2S + 1− l)) exp
(
− iπ(2k − 1)

2S + 1

)
exp((2S + 1)βε) + (−1)2S+1

(48)

for k = 1, ..., bS + 1/2c. Particularly simple are the cases
of S = 1/2 and S = 1,

f (2,1)(ε) = nF(2ε)− i
1

2 cosh(βε)

f (3,1)(ε) =
1
2
nB(ε)− 3

2
nB(3ε)− i

√
3

sinh(βε/2)
sinh(3βε/2)

· (49)

Here, standard notations for Fermi/Bose distribution
functions nF/B(ε) = [exp(βε)± 1]−1 are used.

In general the EDF for half-integer and integer spins
can be expressed in terms of Fermi and Bose EDF respec-
tively. We note that since auxiliary Fermi fields introduced
for the representation of SU(N) generators do not repre-
sent the true quasiparticles of the problem, helping only
to treat properly the constraint condition, the distribution
functions for these objects in general do not have to be real
functions. Nevertheless, one can prove that the imaginary
part of the EDF does not affect the physical correlators
and can be eliminated by introducing an infinitesimally
small real part for the chemical potential. In spin prob-
lems, a uniform/staggered magnetic field usually plays the
role of such real chemical potential for semi-fermions.

Let us illustrate the application of the semi-fermionic
formalism for spin Hamiltonians. As an example we con-
sider the SU(2) Heisenberg model for S = 1/2 with the
nearest neighbor interaction

Hint = −
∑
〈ij〉

JijSiSj . (50)
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Fig. 7. First few graphs for the free energy expanded with
respect to local molecular magnetic field. Solid line stands for
semi-fermions. Zig-zag line denotes the “condensate” field.

We start with imaginary-time semi-fermionic description
of the ferromagnetic (FM) state of the Heisenberg model
(J > 0). We follow the standard procedure developed in
the original paper of Popov and Fedotov [25]. After apply-
ing the Hubbard-Stratonovich transformation to decouple
the four-semi-fermion term in (50) by the local vector field
Φi(τ) the effective action is obtained:

AFM
eff [ψ,Φ] = Ã0[ψ,Φ]

− 1
4

∫ β

0

dτ
∑
q

(IFM(q))−1Φq(τ)Φq(τ) (51)

where ψT = (ψ↑ψ↓) - fields denoting the semi-fermions in
SU(2) representation of the S = 1/2 spin operators,

I(q) = IFM(q) =
1
N

∑
rij

IFM(rij)eiqr (52)

and I(0) = ZJ > 0 for the FM instability (here Z de-
notes the number of the nearest neighbors, N stands for
the number of unit cells). The FM phase transition cor-
responds to appearance at T = Tc of the nonzero average
〈Φz(0, 0)〉 which stands for nonzero uniform magnetiza-
tion, or by another words, corresponds to the Bose con-
densation of the field Φz .

Splitting the field Φz on the time-independent spatially
homogeneous (uniform) part and the fluctuating filed Φ̃z

Φz(k, ω) =M(βN)1/2δk,0δω,0 + Φ̃z(k, ω) (53)

make it possible to integrate over all semi-fermionic fields.
As a result, the nonpolynomial effective action can be de-
rived for the FM Heisenberg model

Aeff = A0[Φ] + Tr ln
(
G−1
σ (Φz , Φ±)

)
(54)

where Gσ = −〈Tτψσ(j, τ)ψ̄σ(j, 0〉 stands for the local
Green’s function of semi-fermions. The expansion of the
Tr lnG−1

σ with respect to Φ fields results in standard
Ginzburg-Landau functional (see Fig. 7). The effects of
molecular field are included into zero approximation for
GF:

G0
σ(iωn) = [iωn + σzσσM/2]−1.

In one loop approximation the standard molecular field
equation can be reproduced

M = IFM(0) tanh(βM/2). (55)

The saddle point (mean-field) effective action is given by
well-known expression

A0[M] = −N
[
βM2

4IM(0)
− ln

(
2 cosh

(
βM

2

))]
(56)

and the free energy per spin f0 (see Fig. 7) is determined
by standard equation:

βf0 = − lnZS =
βM2

4IM(0)
− ln

(
2 cosh

(
βM

2

))
· (57)

Calculation of the second variation of Aeff gives rise to the
following expression

δAeff =− 1
4

∑
k

Φz(k, 0)
[
I−1
M (k)− β

2 cosh2(βΩ)

]
Φz(k, 0)

− 1
4

∑
k,ω 6=0

I−1
M (k)Φz(k, ω)Φz(k, ω)

−
∑
k,ω

Φ+(k, ω)
[
I−1
M (k)− tanh(βΩ)

2Ω − iω

]
Φ−(k, ω)

(58)

where Ω = (gµBH +M)/2. For T > Tc one easily ob-
tains the effective static spin-spin interaction equivalent to
those given by the Random Phase Approximation (RPA)

Γ (q, 0) = 〈Φ(q, 0)Φ(−q, 0)〉 = 2I(q)/(1− 2χ0I(q)),

where χ+−
0 (q, 0) = 2χzz0 (q, 0) = 2χ0 = 2S(S + 1)β/3

stands for the on-site spin susceptibility in paramagnetic
state.

Let us now consider the Heisenberg model with antifer-
romagnetic (AFM) sign of the exchange integral (J < 0).

AAFM
eff [ψ,Φ] = Ã0[ψ,Φ]

+
1
4

∫ β

0

dτ
∑
q

(IAFM(q))−1Φq(τ)Φq(τ)

(59)

and I(Q) = ZJ < 0 for the AFM instability correspond-
ing to vector Q = (π, ..., π) (we consider the hypercubic
lattice for simplicity). In contrast to the FM case, we can
now represent the longitudinal component of the field Φz

as a superposition of the staggered time-independent part
(“staggered condensate”) and a fluctuating field

Φz(k, ω) = N (βN)1/2δk,Qδω,0 + Φ̃z(k, ω). (60)

As a result, the integration over semi-fermionic fields can
be done explicitly. Introducing two sublattices for ψ fields
one gets 4 × 4 matrix structure for the semi-fermionic
Green’s functions. Since the AFM instability is associated
with appearance of a nonzero staggered magnetization N ,
it is necessary to take into account both “normal” and
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“anomalous” GF determined as follows:

G0
σ(iωn) = −

∫ β

0

dτeiωnτ 〈Tτψσ(k, τ)ψ̄σ(k, 0)〉

= − iωn
ω2
n + Ω̃2

(61)

F0
σ(iωn) = −

∫ β

0

dτeiωnτ 〈Tτψσ(k, τ)ψ̄σ(k +Q, 0)〉

= − Ω̃σzσσ
ω2
n + Ω̃2

· (62)

where Ω̃ = (N + gµBh)/2. Integrating over all semi-
fermions one obtains the mean-field equation for the stag-
gered magnetization:

N = −IAFM(Q) tanh(βN/2) (63)

and

A0[N ] = N

[
βN 2

4IM(Q)
+ ln

(
2 cosh

(
βN
2

))]
· (64)

After taking into account the second variation of Aeff the
following expression for the effective action is obtained
(see e.g. [56,57]):

δAeff =
1
4

∑
k

Φz(k, 0)
[
I−1
M (k) +

β

2 cosh2(βΩ̃)

]
Φz(k, 0)

+
1
4

∑
k,ω 6=0

I−1
M (k)Φz(k, ω)Φz(k, ω)

+
∑
k,ω

Φ+(k, ω)

[
I−1
M (k)+

2Ω̃ tanh(βΩ̃)
4Ω̃2+ω2

]
Φ−(k, ω)

−
∑
k,ω

Φ+(k +Q, ω)
iω

4Ω̃2 + ω2
Φ−(k, ω). (65)

The application of the Schwinger-Keldysh formalism for
the Heisenberg model is straightforward. Applying the
semi-fermionic transformation to the partition function
one obtains the action as an integral along the closed-time
Keldysh-contour

A = A0 +Aint = A0 +
∮
C

dt
∑
q

J(q)Sq(t)S−q(t) (66)

where A0 corresponds to noninteracting semi-fermions

A0 =
∮
C

dt
∑
i

ψ̄i

(
(GR,α0 )−1 0

0 (GA,α0 )−1

)
ψi. (67)

We denote Jq=J
∑
〈l〉e

iql, νq=Jq/J0 and apply four-
component semi-fermionic representation for FM case
and eight-component representation with ψT=(ψ̃Tk ψ̃

T
k+Q)

for the AFM case. Performing the standard Hubbard-
Stratonovich transformation along the Keldysh contour

�
�+

�+�
2

��

��+
��

��

�+

�+�+�

4

a) b)

Fig. 8. Feynman diagrams contributing to dispersion (a) and
damping (b) of magnons. Solid line denotes semi-fermions.

with the help of the two-Keldysh-component vector (Bose)
field Φ, one gets

Aint = −1
2

Tr(ΦTqJ
−1
q σzΦq) + Tr(ψ̄Φµσγµψ). (68)

Now we integrate out ψ fields and express the effective
action in terms of Φ fields

Aeff = −1
2

Tr(ΦTqJ
−1
q σzΦq) + Tr ln

(
G−1

0 +Φµσγµ
)

where γµ=(σz ± 1)/2 acts in Keldysh space. Since in gen-
eral Φ is a time- and space-dependent fluctuating field
the partition function (41) cannot be evaluated exactly.
Nevertheless, when a magnetic instability occurs, we can
represent the longitudinal component of this field as a su-
perposition of a uniform (FM) or staggered (AFM) time-
independent part and a fluctuating field

Φzµ(q, ω) = condensate + φzµ(q, ω), (69)

where Φ±µ (q, ω) = φ±µ (q, ω) with the matching conditions
at t = ±∞

φα1 (−∞) = φα2 (−∞), φα1 (+∞) = φα2 (+∞). (70)

We expand Tr ln(G−1
0 + φµσγµ) in accordance with

Tr ln(...) = Tr lnG−1
0 + Tr

∞∑
n=1

(−1)n+1

n
(G0φµσγ

µ)n.

(71)

The spectrum of the excitations (FM or AFM magnons)
can be defined as poles of the transverse GF

D+−
x,t = D(x, t) = −i〈TCφ+

1 (x, t)φ−1 (0, 0)〉·

The procedure of the calculation of this GF is similar to
that for a “fermionic” GF. Introducing the sources and
evaluating (71) one gets

D0(ω) = DR
0

(
1 +Nω Nω
1 +Nω Nω

)
−DA

0

(
Nω Nω

1 +Nω 1 +Nω

)
where the retarded and advanced magnons GF’s are

DR,A(q, ω) = (ω − ω(q)± iδ)−1, Nω = (exp(βω)− 1)−1.
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The magnon spectrum is determined by the zeros of the
determinant of J−1

q −Π+−
2 (ω) (see Fig. 8a) in equilibrium

ωq = J0M(1− νq)⇒ λq2, (72)

for FM magnons and

ωq = |J0|N
√

1− ν2
q ⇒ c|q|, (73)

for AFM magnons. The uniform and staggered magnetiza-
tion are given by equations (55) and (63) correspondingly.

The magnon damping is defined by four-magnon pro-
cesses Π+−+−

4 , shown in Figure 8b. The derivation of the
kinetic equation and calculation of magnon damping is
reserved here for a detailed publication.

We consider now the second possibility to decouple
the four-fermion term in the Heisenberg model with the
antiferromagnetic sign of spin-spin interaction which can
be written in a form equivalent to (50):

Hint =
1
2

∑
〈ij〉

Jijψ
†
iψjψ

†
jψi +

1
4

∑
〈ij〉

Jijρiρj . (74)

Last term in the Hamiltonian (74) describes the fluctua-
tions of semi-fermionic density ρi = ψ†iψi and therefore
is irrelevant for our calculations. In contrast to descrip-
tion of the local correlations achieved with the help of the
local vector bosonic field we introduce now the bi-local
scalar bosonic field Λij depending on two sites and re-
sponsible for inter-site semi-fermionic correlations. Defin-
ing new coordinates R=(Ri+Rj)/2, r=Ri−Rj and ap-
plying a Fourier transformation we obtain the effective
action

Aeff = −1
2

Tr(ΛTPq1J
−1
q1−q2

σzΛPq2) + Tr ln
(
G−1

0 − Λµγµ
)
.

This effective action describes the nonequilibrium quan-
tum spin-liquid (SL). We confine ourselves to consider the
uniform phase [50,51,54,55] of Resonant Valence Bonds
(RVB) in 2D antiferromagnets. It is suitable to rewrite
the functional in new variables, namely the amplitude ∆
and the phase Θ = rA(R), according to formula

Λ〈ij〉µ (R, r) = ∆(r)Jγµ exp (irAµ(R)) . (75)

The exponent in (75) stands for gauge fluctuations to be
taken in eikonal approximation. As a result, the effective
action can be written in continuum limit in terms of the
gauge fields Aα as follows:

Aeff =
∮
C

dt
∫

dkAα(k, t)παβAβ(k, t). (76)

The spectrum of excitations in the uniform SL is defined
by the zeros of current-current correlation function [30]

πR,αβq,ω = Tr(pαpβ(GRp+qG
K
p +GKp+qG

A
p ) + δαβf(Jp∆))

in equilibrium [52,53] and is purely diffusive (see e.g. [50])

ω = iJ∆|q|3, ∆ = −
∑
q

ν(q) tanh
(
Jq∆

T

)
· (77)

We denote GK an off-diagonal element (Keldysh compo-
nent) of semi-fermionic GF in triangular representation,
provided that

GK0 (ε) = −i2πδ(ε± h)[B1/2(βε)± i sech(βε)]

is expressed in terms of a Brillouin function B1/2 contain-
ing correct information about occupied states. The equa-
tion of motion for GK generally constitutes the quantum
kinetic equation.

The quantum kinetic equation for nonequilibrium spin
RVB-liquids can be obtained by taking into account the
higher order diagrams similarly to Figure 8b with current-
like vertices and will be presented elsewhere.

We discuss now briefly some possible applications
of the imaginary-time and real-time Schwinger-Keldysh
semi-fermionic formalism developed for SU(N) Hamilto-
nians for solution of the condensed matter physics prob-
lems. The Keldysh technique in application to disor-
dered systems attracts a constant interest (see [42–46])
as an alternative approach to the replica technique. The
main advantage of the closed-time contour calculations
is an automatic normalization (disorder independent) of
the partition function (see [42]). The application of real-
time Schwinger-Keldysh approach allows one to study the
quantum dynamics of disordered systems being out of
equilibrium. We note, that the formalism developed in
the present paper is also a very promising tool for de-
scription of a quantum phase transitions (magnetic, spin-
glass etc.) in SU(N) models (see [58,59]) Another possible
application of the semi-fermionic SU(N) representation
is the description of paramagnet-(ferro) antiferromag-
net or paramagnet-spin liquid transitions in equilibrium
and nonequilibrium strongly correlated electron systems
(see [60,61]). The nonlinear spin waves in strongly cor-
related local-itinerant magnets and the kinetic properties
of the nonequilibrium spin liquid are also possible prob-
lems to be considered with the method proposed. The
third interesting example of the application of the semi-
fermionic formalism is the Kondo systems [62], for exam-
ple the Kondo lattice model usually used for interpreta-
tion of an exotic properties of heavy-fermion compounds
or the nonequilibrium Kondo-systems in semiconducting
hetero-structures (see e.g. [63–66]). The main advantage
of the semi-fermionic representation in applications to the
strongly correlated systems in comparison with another
methods is that the local constraint is taken into account
exactly and the usual Feynman diagrammatic codex for
the composite itinerant-local compound is applicable.

Summarizing, we constructed a general scheme for the
semi-fermionic representation for generators of the SU(N)
algebra. A representation for the partition function is
found both in imaginary and real time. The approach de-
veloped leads to the standard diagram technique for Fermi
operators, although the constraint is taken into account
rigorously. The method proposed allows to treat SU(N)
generators on the same footing as Fermi and Bose systems.
The technique derived can be helpful for the description
of quantum systems in the vicinity of a quantum phase
transition point and for nonequilibrium systems.
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